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ABSTRACT 

It is shown tha t  D. Orns te in ' s  construct ion of class one t ransformat ions  

leads almost  surely to singular maximal  spectral  type.  Some re la ted  har-  

monic  analysis problems are discussed. 

1. In t roduc t ion  

This Note is concerued with the spectral analysis of a class of transformations 

introduced by D. Ornstein in [5]. These transformations, called class one or 

rank one, have spectral multiplicity one. It is apparently an unsolved problem 

whether the spectral type may be absolutely continuous with respect to Lebesgue 

measure (such an example would be very meaningful to Banach's well-known 

problem whether a dynamical system (fl, p, T) may have simple Lebesgue spec- 

trum). In [5] an example of a mixing rank one transformation is obtained. The 

construction makes essential use of probabilistie techniques. It is our purpose 

here to show that for such a random construction the maximal spectral type is 

always singular. This investigation wiU be mainly oriented towards harmonic 

analysis. Next we briefly recall Ornstein's construction. The dynamical sys- 

tem (DS) is defined on [0,1] with Lebesgue measure and is obtained as a limit 

of following process: At stage n, we have disjoint intervals J1, J2 , . . . ,  Jh(n), J '  

partitioning [0,1]. The Ji (1 < i _< (h(n)) are of the same length and T maps 

Ji linearly on J~+l for 1 _< i < h(n), Jh(n) is mapped in J ' .  The transforma- 

tion T is not defined on J '  at this stage. Points of J '  will be mapped either 

in J '  or in J1. To describe the transformation at state n + 1, fix an integer 
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p(n) and a sequence of integers {a( . ,p) l l  _< p _< p(=)}. Partition each Ji in 

equal length intervals J~,r (1 _< p < p(n)) such that T maps Ji,p linearly to 
I Ji+l,v (1 _< i < h(n)). Partition J~ in intervals (J~,.) ~_<r_<.(-) and a remainder 

l_<.<_.(.,p) 
interval J".  For 1 _< p _< p(n), T maps Jh(.),p linearly on J~,l and Jp,. linearly 

on J~,.+l for a < a(n,p).  The interval J~,.(.,p) is mapped linearly on Jl,v+l for 

p < p(n). T maps Jp(.),a(.,p(n)) into J" and is not defined on J". The intervals 

at stage n + 1 are thus 

{Ji,pI 1 < i < h(n), 1 <_ p <_ p(n)} O {J;, . l l  <_ p <_ p(n), 1 < a < a(n,p)}  O {ju} 

and 

r(-) 

(1.11 h(n + 11 = h(n).  p(n) + ~ a(n,p). 
1 

Jh(n} 

J1.2 Jp(n).2 

JI.1 ~2 ,1  J~.),1 

Jh(n).1 Jb(n).2 

J2 

J 1  

JI,1 J1.2 ' ' �9 

In Ornstein's construction, the p(n) are rapidly increasing and the numbers 

a(n,p)  (1 <_ p <_ p(n)) chosen "at random" in a certain way (subject to cer- 

tain bounds). This may be organized in various ways. Ornstein's procedure 

consists in choosing numbers s(n,p) randomly in an interval {1, 2 , . . .  ,K ,} ,  the 
selections being independent for different p. Here Kn < h ( n - 1 )  and Kn --* co for 

n --* co. One then lets a(n,p)  = h(n - 1)+ s(n,p) - s ( n , p  - 1) with s(n, O) = O. 
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But the argument presented in the next section applies equally well to different 

presentations. 

2. E s t i m a t e s  o n  s p e c t r a l  m e a s u r e s  

Given a function f �9 L2(0,1), the corresponding spectral measure v! is defined 

by 

1 

(2.1) z)l(n ) = /e-2 'r in 'vf(dO) = (f, Tnf)  (n �9 7.). 

0 

Also, ~,f is almost surely the ~*-limit in M(z') (Radon measures on the circle) of 

the sequence of trigonometric polynomials 

N 

(2.2) ~1 
jffil 

(T is assumed ergodic). 

The statement made in the introduction is the following. 

PROPOSITION 1: In the construction of [5], v! is a/ways singular with respect to 

LebesKue measure. 

In proving this, it clearly suf~ces to consider functions f that are "elementary" 

in the sense that for some integer n, f is constant on the intervals J1,. �9 �9 Jh(n), j ,  

appearing at state n. From the preceding, we have to analyze the behavior of 

the trigonometric polynomials 

(2.3) 1 f(Ti~)e2,,ii o 
V ~  [i=1 J 

fo r  N --} co.  

Choose m > >  n ~ d  denote ~ ' ~  the , ~ u e  of S on the i n t e ~  JJ'~ of the 
mth-partition. For ~ E j~m) and N = h(m), one gets from the dynamics of T 
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1 N ~j=l  f(TJw) e2'~ij~ 

(2.4) 

(2.5) 

N 
1 Ev~m)e21tijO 

•l 
~(m--1) ] 

= -1 ) - �89  Z v~ m,e''ij'] 
j=t j ( ,,m-,;, )] 

x p ( m -  1)-�89 I + e 2~ti(p(h(m-1)+h(m-2))+s(m-l'P))O 

+ qm 

where qm corresponds to the intervals 

{J~, . l l  _< p _< p(m - 1), 1 < a < a(m - 1,p)}.  

Hence from (1.1) 

1 r(m-1) 
(2.6) IIq-,ll] "" ~ ~ 1  a(m - 1,p) < 2 h(m -h(m)2)p(m - 1) < p(m2- 2)" 

Iterating the preceding up to stage n, it follows that 

(2.4) = 

(2.7) 
h(,O ] 

j = l  J l = n + l  

( ~')-' )] 
~(s189 1 +  Z e2~i(P(~(t)+h(t-1))+'(t'P))s 

p----1 

(2.s)  +qm + qm-1 + " "  + q-- 

The Ll-norm of (2.8) is estimated by the L2-norm, hence from (2.6), by 

1 
(11q~1122 -4- Ilq,~-xll~ + " "  + IIq-I{~) ~ < 2 p(n - 2) 

(2.9) , O. 
ti --I,00 

1 
1 1 / ~ 

- -  4 p ( .  _ 1----~ + " "  + p (m - 2) 
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Define for simplicity 

(2.10) P t ( 0 ) = p ( s  

V(/)-I 
e 2*ri(p(h(O+h(t-1)+s(t'p))s) 

p=O 
(.(l,0)=0). 

For general 0J e [0, 1], (2.4) appears in the form 

h(,,) 1 ,,,-2 
(=.=) I 

j=l j t=,,+l 

where Q(0) is an L2-normalized sum of at most p ( m - 1 )  characters with h (m-1 ) -  

separated frequences and 

IIR(0)ll, _< L ~, '7]  1 + (2.9) -+ 0 for n -> oo. 

Squaring the expression (2.11) and passing to w*-limits, it appears that  for any 

fixed fi > n one may write the spectral measure v I in the form 

Ih(,,) I l 
(2.12) vs = hOD-' ~ "~")<~"~s' . I I  IP t l 2 "v  " + v,, 

j=l I ,,<t<_~ 

where S'~, v .  are measures on n w~th I1~11 -< 1 and IIv.II -+ 0 for ,, --+ oo. 

It is clear from (2.12) that in order to prove v i i  Lebesgue measure, it suffices 

to show that  

P 

I I I  do-  o for o o  

t=n II 

This will be achieved next. We will take rt = 1. The nature of the argument is 

such that  the other cases are covered as well. 

Remark: The previous considerations permit, in fact, to show that  the maximal 

spectral type of T is absolutely continuous with respect to the measure 

o o  

(2.14) ~ 2-" I I  IP4 2' 
n>l  /ffin 

The frequencies of a given polynomial Pt appear as random perturbation by 

the numbers s(~,p) of the progression p(h(s + h(s - 1)), p = O, 1 , . . .  ,p(s - 1. 

In establishing (2.13), this randomization in s ( i ,p )  will be of importance. 
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Take a rapidly increasing sequence of integers A/" and estimate 

where the second factor of (2.15) is bounded by IIn,,IP,,1211, <_ 1, since 

Thus (2.13) may be derived from the corresponding statement where the index l is 

restricted to some subsequence A/'. The point of this construction is to guarantee 

enough spectral dissociation of the factors in the product. In what follows, we 

will assume implicitly n E A f. Denote s(n) the sequence {s(n,p)ll < p <_ p ( l ) - l }  

taken (at random) in the product 

(2.16) ~r, = {1, 2 , . . . ,  An} p(t)-I 

equipped with normalized counting measure. Since Pn depends on this sequence, 

we write Pn = Pn(0, 8(n)). We will show that 

<2 7) ] f l.H 
@fin II - 

(s denoting the product space variable). 

Denoting P -- Pm and Q = IIn<mPn, one has the following: 

The second factor in (2.18) is at most (f  iQI IPI2) �89 + (f Ir �89 < 2. For the first 

factor 

(2.20) / IQ, I IPI2 <_ / IQ,] 

(because the spectrum of P is stflBciently dissociated). 
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Hence, from (2.18), (2.19), (2.20) 

and therefore 

2 

n < m  n < m  

59 

In the preceding, f refers to integration on H • |  

Write 

(2.23) IPml 2 -  I= p(-~) ~e 2"'[('-')(a(m)+h('~-1))]~ e 2"`~176 e -~'`'(~'')~ 

which absolute value we integrate on f/m, for fixed 0. 

Consider the independent variables (p < p(m)) av, a'p on {1, 2,..., k,~} defined 
as 

(2.24) ~(,) = : . ~ , e ,  

1 k 

(2.25) ~' = ~ - i ~ ~(8). 
1 

Write 

(2.26) 

P,q 

Consider a random sign e = (el,..., ep(m)-1) E {I, -1} p(m)-l. Taking conditional 

expectation of (2.26) with respect to the variables (thus the ap) for which ep = I, 

one finds the expression 

(2.27) 

(r-",,) lJ l=+r.o,, -r- 
1-1-~p I+Q , _, 
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Integrating the absolute value of this expression on the product 

fire • {1, - 1 )  p(m)-l, it follows from elementary harmonic analysis on the Cantor 

group* that there is a minoration by 

~,.~, ~/~. (z,o,,,~ ,~;,, ,o,,,~)' >~ (z,o,,o'(/,~,,)' 
(performing first the integration in r Consequently one has for (2.23) 

2 

a=l  / 

Thus, by (2.22), (2.29) 

(2.30) 

Since 

(2.31) 

2 

(: i ,m )21 

a l so  

( : ) '  
which immediately implies (2.4) since Eke. �89 < oo. 

This concludes the proof of Proposition 1. 

B. Weiss pointed out the following corollary to the author. 

PROPOSITION 2: The Ornstein rank I transformations are mi~dng of  any order. 

Proof: According to a recent result of B. Host [2], any mixing transformation 

with singular spectral type has this property. 

Remark: It is a weU-known open problem whether mixing transformations are 

mixing of all order. In the case of rank 1 transformations (in general) S. Ka- 

likow [3] proved that 2-mixing implies 3-mixing. His proof is based on different 

methods. 

* See [1], for instance. 
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3. Append ix  

A natural problem suggested by the preceding (if one tries to prove that the 

maximal spectral type of any r~nk 1 transformation is singular) is the following 

question about trigonometric polynomials. 

Define for n > 1 

kt <ka <'"<kn - ~  e2~rlk$ O 
jffil HL'(n) 

Is sup.>1~. < 1 ? 

At the time of this writing, the best I know to do on this question is contained 

in following. 

PROPOSITION 2: 

(3 .2 )  ~ .  < 1 - c l ~  . 
n 

Proog Define f = (I/x/'fi') ~ �9 2"it~ ~. One has 
jffil 

, ~  ~< /tl-,,,'l '= /~x_,,,r i,+,,,l'; 2,1 + ~ '  (1-/ , , ,  
so that at least 

Also 

1fl c I -  > - ,  
n 

(3 .4)  1 - I / I  = ~ (z - I / I )  2 _> =>1o ( I / I  - z)2 > 4 I>1o 

Write 

(3.5) l f[ 2 - 1 = ! ~ d(e)ea,,"e where d(s = • { ( j , j ' )  I kj - k f  = s  
n 

One has clearly 

(3.6) (s f')' n 2 - n  = ~--: d(t) ~ ISl~ d(t) < n l s l l l l l  -1112112 
boo 
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denoting 

s = {e ~ Zld(e) # 0}. 

At this point, we claim for a fixed integer r < clog ISI the existence of a 

trigonometric polynomial ~0 with following properties: 

(3.7) II~ll~ -< 1, 

(3.8) ~ > 0  onS, 
(3.9) ~--~ ~(t)  > r, 

l E S  

C r 

(3.1o) 11~112 < is i�89 
The construction of ~o is a variant of the McGehee--Pigno-Smith construction in 

their proof of the Littlewood conjecture (see [4]). The only difference is that their 

number of "steps" is ~ log ISI, while here we limit ourselves to r steps. Property 

(3.10) is immediate from the way ~ is built in [4]. 

From (3.8), (3.9) 

(3.11) 

Also from (3.10) 

(3.12) f 
Ill<zo 

I lil ~ -  11 

1 ( I f l  2 - 1 , ~ o )  > - r .  
FL 

cr II1 I~1 < 11111-If l l12 11~112 < ISl�89 - I / I  112. 

Assuring I - f Ill < (log n)/n, o n e  finds 

II1 - I f l l l~  < 

Also, by (3.3) 

(3.13) f I1 -Ill2[ ~ < clogn 

which implies, by (3.6), 
n 2 

(3.14) IS[ > Clog n.  

Substitution of (3.13), (3.14) in (3.12) gives the bound (cr/nx/r~)log n. This 

quantity will be small with respect to (3.11) provided c r <<  Vt'~/logn, permit- 

ting to let r ,-, log n. Consequently 
~ I  r logn 

I l f l  ~ - 11 kol > (1 - o(1)) > c I>X0 n 
which completes the proof, because of (3.4), (3.7). 
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